A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets
نویسندگان
چکیده
Multi-class segmentation of vertebrae is a non-trivial task mainly due to the high correlation in the appearance of adjacent vertebrae. Hence, such a task calls for the consideration of both global and local context. Based on this motivation, we propose a two-staged approach that, given a computed tomography dataset of the spine, segments the five lumbar vertebrae and simultaneously labels them. The first stage employs a multi-layered perceptron performing non-linear regression for locating the lumbar region using the global context. The second stage, comprised of a fully-convolutional deep network, exploits the local context in the localised lumbar region to segment and label the lumbar vertebrae in one go. Aided with practical data augmentation for training, our approach is highly generalisable, capable of successfully segmenting both healthy and abnormal vertebrae (fractured and scoliotic spines). We consistently achieve an average Dice coefficient of over 90% on a publicly available dataset of the xVertSeg segmentation challenge of MICCAI‘16. This is particularly noteworthy because the xVertSeg dataset is beset with severe deformities in the form of vertebral fractures and scoliosis.
منابع مشابه
Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images
This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of ...
متن کاملMulti-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT
The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured verte...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملAutomatic Lumbar Vertebrae Segmentation in Fluoroscopic Images via a New Parallel Hough Transform
Low back pain is a very common problem and the consequent cost is enormous. In spite of the prevalence, however, it is still difficult to obtain accurate diagnostics. Mechanical disorder is now often regarded as the main cause. Presently, a number of studies are directed at measurement of spine kinematics. Since the lumbar spine is a deep-rooted structure, this has been difficult until digital ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.04347 شماره
صفحات -
تاریخ انتشار 2017